Earth Element sorption by basaltic rock : experimental data and modeling results using the “ Generalised Composite approach
نویسنده
چکیده
Sorption of the 14 Rare Earth Elements (REE) by basaltic rock is investigated as a function of pH, ionic strength and aqueous REE concentrations. The rock sample, originating from a terrestrial basalt flow (Rio Grande do Sul State, Brazil), is composed of plagioclase, pyroxene and cryptocrystalline phases. Small amounts of clay minerals are present, due to rock weathering. Batch sorption experiments are carried out under controlled temperature conditions of 20°C with the < 125 μm fraction of the ground rock in solutions of 0.025 M and 0.5 M NaCl and at pH ranging from 2.7 to 8. All 14 REEs are investigated simultaneously with initial concentrations varying from 10 to 10 mol/L. Some experiments are repeated with only europium present to evaluate possible competitive effects between REE. Experimental results show the preferential retention of the heavy REEs at high ionic strength and circumneutral pH conditions. Moreover, results show that REE sorption increases strongly with decreasing ionic strength, indicating two types of sorption sites: exchange and specific sites. Sorption data are described by a Generalised Composite (GC) nonelectrostatic model: two kinds of surface reactions are treated, i.e. cation exchange at >XNa sites, and surface complexation at >SOH sites. Total site density (>XNa + >SOH) is determined by measuring the cation exchange capacity (CEC = 52 μmol/m). Specific concentrations of exchange sites and complexation sites are determined by fitting the Langmuir equation to sorption isotherms of REE and phosphate ions. Site densities of 22 ± 5 and 30 ± 5 μmol/m are obtained for [>XNa] and [>SOH], respectively. The entire set of REE experimental data is modelled using a single exchange constant (log Kex = 9.7) and a surface complexation constant that progressively increases from logK = -1.15 for La(III) to -0.4 for Lu(III). The model proves to be fairly robust in describing other aluminosilicate systems. Maintaining the same set of sorption constants and only adjusting the site densities, we obtain good agreement with literature data on REE/kaolinite and REE/smectite sorption. The Generalised Composite nonelectrostatic model appears as an easy and efficient tool for describing sorption by complex aluminosilicate mineral assemblages. 2 ha l-0 04 50 68 2, v er si on 1 26 J an 2 01 0
منابع مشابه
Numerical Modeling of Rock Slopes with a Potential of Block-Flexural Toppling Failure
One of the most important instabilities of rock slopes is toppling failure. Among the types of toppling failure, block-flexural failures are more common instability which occurs in nature. In this failure, some rock blocks break because of tensile stresses, and some overturn under their weights, and next to all of them topple together. Physical and theoretical modeling of this failure is studie...
متن کاملBP-ANN Approach for Modeling Cd(II) Bio-Sorption from Aqueous Solutions Using Cajanus cajan Husk
This work aims at the modeling of bio-sorption of cadmium(II) onto physically and chemically activated Cajanus cajan (Pigeon pea) husks. Experimental data obtained were fitted to a number of isotherm and kinetic models, and the results interpreted. The monolayer Cd(II) bio-sorption capacities of the husk were found to considerably increase by 2.82 times due to chemical activation, for bio-s...
متن کاملMeso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method
One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...
متن کاملStiffness Prediction of Beech Wood Flour Polypropylene Composite by using Proper Fiber Orientation Distribution Function
One of the most famous methods to predict the stiffness of short fiber composites is micromechanical modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural composite has been designed and the orientation averaging approach has been utilized to predict its stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution func...
متن کاملDiscrete element modeling of explosion-induced fracture extension in jointed rock masses
The explosion process of explosives in a borehole applies a very high pressure on its surrounding rock media. This process can initiate and propagate rock fractures, and finally, may result in the rock fragmentation. Rock fragmentation is mainly caused by the propagation of inherent pre-existing fractures of the rock mass and also from the extension of the newly formed cracks within the intact ...
متن کامل